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This paper describes a computer-algebra program that performs automatic dimensional 
analysis. The user merely provides a list of the types of physical quantities involved in a 
problem, and the program produces a minimum-size set of nondimensional groupings of 
these quantities. These groupings reveal qualitative information about the solution, and 
they may reduce the necessary number of variables that must be varied independently in 
an experimental or numerical solution of the problem. 

1. INTRODUCTION 

Dimensional analysis provides a systematic procedure for combining physical 
quantities into dimensionless groups, which often reduces the number of variables 
necessary to describe a physical problem. A reduction in the number of variables 
reduces the necessary number of experiments or numerical solutions necessary to 
solve the problem over the full range of its physical variables, and a reduction also 
reduces the number of tables or graphs necessary to present such solutions. Moreover, 
the groupings also reveal qualitative relations among the physical variables. 

Section 2 summarizes the physical and mathematical foundations of dimensional 
analysis, and Section 3 shows examples of the use of a program implementing these 
techniques. A related paper by Stoutemyer [6] shows how computer algebra may also 
be useful for automatic units conversion and consistency checking when computing 
with expressions which are not dimensionless. 

2. MATHEMATICAL AND PHYSICAL FOUNDATIONS 

The units of all known classes of physical quantities may be expressed as simple 
products of rational powers of the units of a few primary classes of physical quantities. 
For example, a unit of the class of all accelerations may be expressed as a unit of the 
class of all lengths divided by the square of a unit of the class of all times. 

The primary basis can be selected as the set of classes of all masses, lengths, times, 
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temperatures, charges, and forces. The units of all known classes of physical quantities 
may be expressed in terms of the units of these classes. For example, letting { > 
denote the units of its argument, 

{energy} = {momentum}{velocity), (1) 

{momentum} = {mass}{velocity}, (2) 

{velocity} = {length)/{time}. (3) 

If we choose to regard Newton’s third law as the definition of the unit of force 
in terms of those of momentum and time, with a dimensionless proportionality 
constant of 1, then 

(force} = {momentum}/{time}. (4) 

If we choose to regard Coulomb’s law as defining unit of force in terms of units 
of charge, with a dimensionless proportionality constant of 1, then 

{force} = {charge}z/{length}2. (5) 

If we regard Boltzmann’s law as a definition of. the unit of temperature in terms of 
the unit of the average energy per degree of freedom per molecule for a perfect 
gas, with a dimensionless proportionality constant of 1, then 

{temperature} = {energy}. (6) 

(The number of molecules and the degrees of freedom are pure numbers.) 
If we regard Newton’s law of gravitation as defining unit of force in terms of those 

of mass and length, with a proportionality constant of 1, then 

{force} = {mass}2/{length}2. (7) 

If we regard Einstein’s law of mass-energy equivalence as defining the unit of energy 
in terms of that of mass, with a proportionality constant of 1, then 

{energy} = {mass}. (8) 

If we regard deBroglie’s law relating the wavelength and momentum of a photon 
as a definition of the unit of momentum in terms of that of length, with a nondimen- 
sional proportionality constant of 1, then 

(momentum1 = l/{length). 

Together, Eqs. (1) through (9) imply 

(9) 

{force} = {velocity) = 1, (10) 

{length} = (time} = (momentum} = {temperature} = {energy} = (mass} : 5 I, 
(11) 

{charge} = f 1. w 
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All physical quantities are dimensionless in the system of units given by (10) 
through (12). (If the concept of a finite universe is disturbing, how about the concept 
of a dimensionless universe ?) Equations (10) through (12) reveal that the speed of 
light, Boltzmann’s constant, and Plan&s constant are all simply consequences of 
our using a dimensional basis that is redundant in view of known physical laws. 
Different philosophers have said that all is motion, all is matter, all is number, and 
all is mind. Perhaps all are right. 

Could the independent alternatives for the sign in (12) be connected with the 
fact that both positive and negative charges are observed, and could the independent 
alternatives for the sign in (11) be connected with antimatter ? 

At the present time it is fashionable to take the mass, length, and time as the basis, 
retaining the laws of gravitation, mass-energy equivalence, and photon momentum- 
wavelength equivalence as side conditions that all physical phenomena are constrained 
to obey. However, in celestial mechanics, (7) is sometimes used to eliminate mass 
from the basis, whereas in high-energy physics, (8) and (9) are sometimes used to 
eliminate all but length from the basis. In general we may regard a set of relations such 
as a subset of (1) through (9) as a set of simultaneous nonlinear equations to be solved 
for some of the variables in terms of a remaining basis. By tradition, (7) through (9) 
are usually excluded, and the relations are solved in terms of mass, length, and time, 
sometimes together with charge if (5) is excluded and/or temperature if (6) is excluded. 
However, there are numerous other possible bases. 

In terms of mass, length, and time, (7) through (9) are, respectively, equivalent to 

{mass} = (length}3/{time)2, (13) 
{length} = {time>, (14) 

{time} = {mass}{length}2. (15) 

One or more of these three equations can be solved simultaneously in a variety 
of ways to eliminate a corresponding number of basis elements. 

All known physical laws are expressible in a dimensionless form that is independent 
of units. In order to comply with this invariance principle, if we use a basis other than 
(10) through (12), the physical quantities that enter a physical relation cannot 
necessarily enter it in an arbitrary manner. Rather, the quantities must enter the 
relation in a dimensionally homogeneous manner so that the relation can be converted 
to a dimensionless form. There is one .such constraint for each class of physical 
quantities that we include in our basis; and each of these implied constraints might 
reduce the number of variables in the dimensionless form by 1, compared to the 
number of physical variables. If we had begun with a basis of fewer classes and 
sufficient insight, we might have used correspondingly fewer physical variables from 
the beginning. Fortunately, there is an algorithm that automatically constructs 
an appropriate set of dimensionless quantities from any given physical quantities 
and any given basis. 

Suppose that we propose the existence of a physical relation relating physical 
quantities q1 , 4% ,..., q* : 

g(q, > 92 9***9 43 = 0. (16) 
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Suppose also that for i = 1,2,..., m, a unit ui of qi is expressible in terms of the units 
bj of a chosen basis set of primary classes of physical quantities 

and that 
ui =.fAb, , b, ,..., b,), (17) 

fi(T1b, , T2bz ,..., Tnzbm) = T;“‘T~“~” a.. Tzfi(b, , b, ,..., 6,). (18) 

Here Tj is an arbitrary pure-number scaling factor, and Uij is a pure-number rational 
exponent, with i = 1, 2 ,..., n and j = 1, 2 ,..., m. 

Let r denote the rank of the matrix with elements aij, and without loss of 
generality, order qi and bj so that 

(19) 

with B r-by-r nonsingular. Also, let 

ok = qk , k = 1, 2 ,..., r, (20) 

wz = 4r+z 3 I = 1, 2 ,..., n - r, (21) 
P = CB-l. (22) 

THE BUCKINGHAM PI THEOREM. Given (16) through (22), (16) must be expressible 
in the form 

h(y, , yz ,..., 14 = 0, (23) 

where y1 is the dimensionless product given by 

yz = wz fi f.$““, 
k=l 

1 = 1, 2 ,..., n - r. (24) 

Proof. Brand [I] or Kurth [2, 31. 
Note that Eq. (24) implies that qK is not involved if column k of P is zero, that there 

is no relation among any of q1 through q,, alone if r = n, and that q1 through qR 
are all nondimensional if r = 0. Note also that A here is the transpose of the A 
in most statements of the theorem. 

Compared with (16), (23) has the advantage that there are r fewer variables, simpli- 
fying the acquisition and presentation of -an experimentally or numerically obtained 
relation. Equation (23) also gives valuable qualitative information about the effects 
of scale changes in experimental or numerical models. It is important to note, however, 
that the nondimensional products are nonunique. Different orderings of q and b 
consistent with (19), will give different y, and any y may be mapped into another 9, 
where each component of 9 is a distinct product of powers of the components of y. 
Note that in (23) each component of w occurs in only one yZ . Therefore, subject to 
(19), it is desirable to order the components of q so that w contains physical quantities 
which we would most like to have isolated in a single component of y. Usually, 
we would prefer to isolate whatever physical quantity we regard as dependent and 
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also the physical quantities that are most readily varied experimentally or numerically. 
It is usually less important that physical quantities such as physical constants occur 
in only one y component. 

3. THE PROGRAM AND EXAMPLES OF ITS USE 

Informally, (16) through (24) indicate a direct sequence of steps for constructing y, 
from q, b, and A. The corresponding MACSYMA program is available from the 
author.’ As a highly important manner of user’convenience, the program also con- 
structs A from q and b together with a rather thorough library of over 50 predefined 
relations such as (1) through (4). There are also mechanisms for the user to add or 
delete library entries. Judging from my attempts, manual derivation and entry of 
A is alarmingly error prone. (Judging from the percentage of errors that the program 
has revealed in published examples, manual derivation of y from A and q is also 
rather error prone.) To further minimize the chance of errors in entering q and new 
library entries, they are entered symbolically rather than as vectors of numbers. 
Similarly, the components of y are displayed symbolically to minimize the chance 
of misinterpretation. Steps corresponding to (19) through (22) and (24) could be 
programmed in a traditional numerical computation language such as FORTRAN, 
but a minimal necessity for input and manual preprocessing together with a natural 
style of input and output dramatically help make a program a joy rather than a 
burden to use. 

Although MACSYMA does have a built-in function for symbolically solving 
simultaneous nonlinear polynomial equations, it is currently impractical to solve a 
system of over 50 such equations. Consequently, rather than offer the user a completely 
general choice of basis, he is offered a choice of the set [charge, temperature, length, 
time, mass] or any subset of this set which excludes charge and temperature if it 
excludes any of the other three. This selection includes all of the usual bases, while 
permitting the following technique for avoiding the necessity of solving numerous 
simultaneous nonlinear equations. 

A set of over 50 secondary quantities are predefined in terms of charge, temperature, 
length, time, and mass by equations such as (1) through (4), with the secondary 
quantity on the left side. If the user establishes the electric permittivity of a vacuum 
as a pure number, then (mas@ length3/a/time) is substituted for charge in the right 
side for any secondary quantity that is used. If the user establishes Boltzmann’s 
constant as a pure number, then (mass length2/time2) is substituted for temperature 
in the right side of any secondary quantity that is used. Next, the right side of (13), 
(14), or (15) is similarly substituted for the left if, respectively, only one of the gravity 
constant, speed of light, or Plank’s constant is established as a pure number by the 
user. There are, of course, other possibilities for which basis-class is eliminated by 
which equation, but it is the constants taken as pure numbers rather than the classes 
in the basis that are relevant for dimensional analysis. If the user establishes two of 
these three constants as pure, then a solution of the corresponding two simultaneous 
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equations for the two variables on the left side is substituted in the right side of any 
secondary quantity that is used. Since there are only three pairs, these solutions are 
preestablished rather than generated as needed. If the user establishes all three of these 
constants as pure, then trivially, all physical constants are already dimensionless. 
The default is to have Boltzmann’s constant and the electric permittivity of a vacuum 
be pure numbers. 

MACSYMA is an interactive language, which appreciably enhances the con- 
venience of a program such as this. The language is most fully described by the 
Mathlab group [1975], but for this demonstration, it suffices to know that for each 
interaction cycle the user is prompted with a uniquely numbered label beginning with 
the letter C. The user then types an expression terminated by a semicolon or a dollar 
sign. MACSYMA then generates a simplified version of the expression having a 
correspondingly numbered label beginning with the letter D. This result is displayed 
only if the terminator was a semicolon rather than a dollar sign, but any result 
may be used by inserting its D-label in a subsequent expression. 

Here are a few examples illustrating how the program can be used. 
Langhaar [4, pp. 137-1391 reports the following example contributed by Knute 

Takle: It is conjectured that for thermistors there is a physical relationship between 
the voltage drop, current, ambient temperature, room-temperature resistance, con- 
vective heat transfer coefficient, and a constant called /?, having the dimension of 
temperature. First, to see if the dimension of /3 is already known: 

(C3) GET(BETA, ‘DIMENSION); 

(D3) FALSE 

It is not. To establish it: 

(C4) DIMENSION(BETA=TEMPERATURE); 

(D4) DONE 

To automatically determine a set of dimensionless variables sufficient to characterize 
the physical relation: 

(C5) NONDIMENSIONALIZE([VOLTAGE, CURRENT, TEMPERATURE, 
RESISTANCE, HEATTRANSFERCOEFFICIENT, BETA]); 

CURRENT SQRT(RESISTANCE) ---------------------------------, 
SQRT(HEATTRANSFERCOEFFIC1EN-T) SQRT(BETA) 

TEMPERATURE _--------- 
BETA 1 
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We learn that the relation may be expressed as a function of only the above three 
variables rather than a function of the six physical quantities. Evidently dimensions 
were preestablished for all but the last of these particular input quantities, but an 
appropriate error message would have informed us if this were not so. 

As another example in Langhaar [4, pp. 40-411, there is thought to be a relation 
between the viscosity, average velocity, molecular mass, and repulsion coefficient 
of a gas. The repulsive force between two molecules is believed to be of the form 
K/DISTANCE”’ with unknown N, so K must have the dimensions 

(C6) DIMENSION(K=MASS*LENGTHt(N+ l)/TIMET2) $ 

WARNING: N NOT MEMBER OF [MASS, LENGTH, TIME, CHARGE, 
TEMPERATURE]. 

In order to have the computation time in milliseconds printed automatically: 

(C7) CPUTIME: TRUE $ 

TIME= 1 MSEC. 

To do a dimensional analysis of the gas-viscosity problem: 

(C8) NONDIMENSIONALIZE([VISCOSITY, K, MASS, VELOCITY]); 

TIME=526 MSEC. 

OW 
-2- 

KN-l VISCOSITY ____----------- 

[ --- 
N+l NE! 

MASSN-l VELOCITYN-l 1 
The physical relation must be expressible as a function of this one dimensionless 
variable, or equivalently, this variable must equal a constant. Consequently, physical 
measurements can be used to determine iV. It turns out to be in the range 7 to 12 
for common gases. For this dimensional analysis problem, the exponent matrix A 
has a symbolic entry N + 1, so the step corresponding to (22) could not have been 
performed by conventional numerical matrix routines. 

As a final example by Kurth [3, pp. 3-71, suppose that we conjecture a relation 
between the deflection angle of a light ray, the mass of a point mass, the speed of light, 
and the distance from the mass to the point of closest approach 

(C9) NONDIMENSIONALIZE( [ANGLE, MASS, LENGTH, 
SPEEDOFLIGHT]); 

TIME=416 MSEC. 

(D9) [ANGLE] 
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We learn that there cannot be dimensionless relation connecting all of these quantities 
and no others. Let us also try including the constant that enters the inverse-square 
law of gravitation: 

(ClO) NONDIMENSIONALIZE([ANGLE, MASS, LENGTH, 
SPEEDOFLIGHT, GRAVITYCONSTANT]); 

TIME==514 MSEC. 

@lo) ANGLE, c-Ii!!‘lil~~~~~~~!% “““s] 
LENGTH SPEEDOFLIGHT2 

Alternatively, for astrophysics problems such as this, we may prefer to use a dimen- 
sional basis in which the gravity constant is taken as a pure number, eliminating 
one member from our dimensional basis. To append the gravity constant to the 
default list of pure constants 

(Cl 1) %PURE: CONS(GRAVITYCONSTANT, %PURE); 

TIME= 1 MSEC. 

(Dl 1) [GRAVITYCONSTANT, BOLTZMANNSCONSTANT, 
ELECTRICPERMITTIVITYOFAVACUUM] 

To proceed with our analysis: 

(C12) NONDIMENSIONALIZE([ANGLE, MASS, LENGTH, 
SPEEDOFLIGHT]); 

TIME=961 MSEC. 

(D12) [ANGLE,------MASS------] 
LENGTH SPEEDOFLIGHT2 

These examples should indicate the nature of the program and its utility. Many 
of the examples in Langhaar [4] have been tried, and none required more than two 
seconds of computation time. However, these times could be appreciably reduced 
by writing a procedure that combined rank-determination with partitioning and 
inversion, and by translating the program into LISP or compiling it, rather than 
merely interpreting it. 
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